Details



An Efficient Skin Cancer Recognition Using Hybrid GAN Model And Deep GRU-CNN Neural Network

Mohammed Saeb Nahi

1-15

Vol 21, Issue 1, Jan-Jun, 2025

Date of Submission: 2024-12-17 Date of Acceptance: 2025-01-12 Date of Publication: 2025-02-10

Abstract

Accurate detection of skin melanoma plays a vital role in clinical diagnosis and treatment planning. In this study, we propose an advanced deep learning approach—a hybrid GAN-CNN-GRU model—for skin cancer classification. Leveraging deep learning techniques allows healthcare providers to efficiently analyze large volumes of images, leading to faster and more accurate diagnoses. However, the requirement for large centralized datasets to train these models poses challenges, particularly due to privacy regulations surrounding medical data. To address this issue, we develop a model that uses a Generative Adversarial Network (GAN) to generate synthetic melanoma images. These images are then classified using a combined CNN-GRU architecture. The hybrid model achieves impressive results, reaching a classification accuracy of 96.07%.

References

  1. Adamu, S., Abdullahi, M., Jamilu, A., & Usman, A. B. (2024). The future of skin cancer diagnosis: A comprehensive systematic literature review of machine learning and deep learning models. Cogent Engineering, 11(1), 2395425. https://doi.org/10.1080/23311916.2024.2395425
  2. Arora, G., Dubey, A. K., & Rocha, A. (2022). Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Computing and Applications, 34(15), 12669– 12676. https://doi.org/10.1007/s00521-022-07132-5
  3. Brancaccio, G., Russo, M., Panarese, A., & Ronchi, A. (2024). Artificial intelligence in skin cancer diagnosis: A reality check. Journal of Investigative Dermatology, 144(3), 492– 499. https://doi.org/10.1016/j.jid.2023.12.002
  4. Brar, K. K., Kaur, G., & Singh, P. (2024). Multi-class skin cancer detection using fusion of textural features based CAD tool. Computers, Materials & Continua, 81(3), 4567– 4582. https://doi.org/10.32604/cmc.2024.048123
  5. Chang, R. C., Smith, L. M., & Patel, N. (2024). The role of health literacy in skin cancer preventative behavior and implications for intervention: A systematic review. Journal of Prevention, 45(2), 1– 16. https://doi.org/10.1007/s10935-024-00770-4
  6. El-Shafai, W., Abd El-Fattah, I., & Taha, T. E. (2024). Deep learning-based hair removal for improved diagnostics of skin diseases. Multimedia Tools and Applications, 83(9), 27331– 27355. https://doi.org/10.1007/s11042-023-17920-3
  7. Gohil, Z. M., & Desai, M. B. (2024). Revolutionizing dermatology: A comprehensive survey of AI-enhanced early skin cancer diagnosis. Archives of Computational Methods in Engineering, 31(8), 4521– 4531. https://doi.org/10.1007/s11831-024-10078-7
  8. Gururaj, H. L., Vinayaka, K., & Manjunath, S. (2023). DeepSkin: A deep learning approach for skin cancer classification. IEEE Access, 11, 50205–50214. https://doi.org/10.1109/ACCESS.2023.3277651
  9. Hermosilla, P., Soto, R., & Torres, R. (2024). Skin cancer detection and classification using neural network algorithms: A systematic review. Diagnostics, 14(4), 454. https://doi.org/10.3390/diagnostics14040454
  10. Hussain, S. I., & Toscano, E. (2024). An extensive investigation into the use of machine learning tools and deep neural networks for the recognition of skin cancer: Challenges, future directions, and a comprehensive review. Symmetry, 16(3), 366. https://doi.org/10.3390/sym16030366
  11. Jayeb, A. W., Rahman, M. S., & Islam, M. R. (2022). Computer vision based skin disease detection using machine learning [Unpublished master’s thesis]. Brac University
  12. Meedeniya, D., Kumarasinghe, H., & Kolonne, S. (2024). Skin cancer identification utilizing deep learning: A survey. IET Image Processing, 18(13), 3731–3749. https://doi.org/10.1049/ipr2.13045
  13. Mehta, S., & Singh, A. (2024). Multi-modal skin cancer diagnosis using CNN and SVM on dermoscopic and clinical images. 2024 3rd International Conference for Advancement in Technology (ICONAT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICONAT59457.2024.10480662
  14. Mishra, S., Tripathy, H. K., & Nayak, S. R. (2025). A hybrid fused-KNN based intelligent model to access melanoma disease risk using indoor positioning system. Scientific Reports, 15(1), 7438. https://doi.org/10.1038/s41598-025-56782-2
  15. Pandiyan, M., Sivakumar, S., & Nayak, S. R. (2024). Skin cancer classification using convolutional neural network with DWT features. 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 1–6). IEEE. https://doi.org/10.1109/Confluence60223.2024.10503412
  16. Rai, H. M. (2024). Cancer detection and segmentation using machine learning and deep learning techniques: A review. Multimedia Tools and Applications, 83(9), 27001–27035. https://doi.org/10.1007/s11042-024- 18442-2
  17. Ramachandran, M., Daniya, T., & Saritha, B. (2021). Skin cancer detection using machine learning algorithms. *2021 Innovations in Power and Advanced Computing Technologies (i-PACT)* (pp. 1–6). IEEE. https://doi.org/10.1109/i-PACT52855.2021.9696682
  18. Rehman, F., Khan, M. A., & Alotaibi, F. S. (2024). Skin disease detection system. 2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 1–5). IEEE. https://doi.org/10.1109/SMART59791.2024.10537024
  19. Salinas, M. P., López, C., & Martínez, F. (2024). A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digital Medicine, 7(1), 125. https://doi.org/10.1038/s41746-024-01095-8
  20. Tanusha, G., & Ashwini, K. (2024). SVM-based skin cancer diagnosis for malignant and benign tumor distinction. International Conference on Computational Intelligence in Data Science (pp. 123–135). Springer. https://doi.org/10.1007/978-3-031-53930-3_10
  21. Verma, N., Ranvijay, & Yadav, D. K. (2025). A comprehensive review on step-based skin cancer detection using machine learning and deep learning methods. Archives of Computational Methods in Engineering, 32(1), 1–54. https://doi.org/10.1007/s11831-024-10108-4
  22. Yang, G., Luo, S., & Greer, P. (2024). Advancements in skin cancer classification: A review of machine learning techniques in clinical image analysis. Multimedia Tools and Applications, 83(5), 1– 28. https://doi.org/10.1007/s11042-024-18530-3
  23. Zhang, L., Wang, Y., & Chen, X. (2024). A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm. Biomedical Signal Processing and Control, 90, 105858. https://doi.org/10.1016/j.bspc.2024.105858
Download PDF
Back

Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Innovations in Scientific Engineering does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.

BOOSTERJP BOOSTERJP BOOSTERJP BOOSTERJP BOOSTERJP BOOSTERJP BOOSTERJP ELANG212 ELANG212 KERAJAANSLOT GORI77 GORI77 GORI77 WINSTRIKE69 WINSTRIKE69 WINSTRIKE69 WINSTRIKE69 WINSTRIKE69 CLAN4D CLAN4D DINAMIT4D DINAMIT4D DINAMIT4D DINAMIT4D DINAMIT4D VIRAL88 VIRAL88 VIRAL88 SAMSONBET86 SAMSONBET86 PAKONG86 JAGOAN86 LINABET69 KAPTENJACKPOT KAPTENJACKPOT KAPTENJACKPOT SUPERJP GILAJP boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp boosterjp BOOSTERJP BOOSTERJP toto5d