An Efficient Skin Cancer Recognition Using Hybrid GAN Model And Deep GRU-CNN Neural Network
Mohammed Saeb Nahi
Abstract
Accurate detection of skin melanoma plays a vital role in clinical diagnosis and treatment planning. In this study, we propose an advanced deep learning approach—a hybrid GAN-CNN-GRU model—for skin cancer classification. Leveraging deep learning techniques allows healthcare providers to efficiently analyze large volumes of images, leading to faster and more accurate diagnoses. However, the requirement for large centralized datasets to train these models poses challenges, particularly due to privacy regulations surrounding medical data. To address this issue, we develop a model that uses a Generative Adversarial Network (GAN) to generate synthetic melanoma images. These images are then classified using a combined CNN-GRU architecture. The hybrid model achieves impressive results, reaching a classification accuracy of 96.07%.
References
- Adamu, S., Abdullahi, M., Jamilu, A., & Usman, A. B. (2024). The future of skin cancer diagnosis: A comprehensive systematic literature review of machine learning and deep learning models. Cogent Engineering, 11(1), 2395425. https://doi.org/10.1080/23311916.2024.2395425
- Arora, G., Dubey, A. K., & Rocha, A. (2022). Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Computing and Applications, 34(15), 12669– 12676. https://doi.org/10.1007/s00521-022-07132-5
- Brancaccio, G., Russo, M., Panarese, A., & Ronchi, A. (2024). Artificial intelligence in skin cancer diagnosis: A reality check. Journal of Investigative Dermatology, 144(3), 492– 499. https://doi.org/10.1016/j.jid.2023.12.002
- Brar, K. K., Kaur, G., & Singh, P. (2024). Multi-class skin cancer detection using fusion of textural features based CAD tool. Computers, Materials & Continua, 81(3), 4567– 4582. https://doi.org/10.32604/cmc.2024.048123
- Chang, R. C., Smith, L. M., & Patel, N. (2024). The role of health literacy in skin cancer preventative behavior and implications for intervention: A systematic review. Journal of Prevention, 45(2), 1– 16. https://doi.org/10.1007/s10935-024-00770-4
- El-Shafai, W., Abd El-Fattah, I., & Taha, T. E. (2024). Deep learning-based hair removal for improved diagnostics of skin diseases. Multimedia Tools and Applications, 83(9), 27331– 27355. https://doi.org/10.1007/s11042-023-17920-3
- Gohil, Z. M., & Desai, M. B. (2024). Revolutionizing dermatology: A comprehensive survey of AI-enhanced early skin cancer diagnosis. Archives of Computational Methods in Engineering, 31(8), 4521– 4531. https://doi.org/10.1007/s11831-024-10078-7
- Gururaj, H. L., Vinayaka, K., & Manjunath, S. (2023). DeepSkin: A deep learning approach for skin cancer classification. IEEE Access, 11, 50205–50214. https://doi.org/10.1109/ACCESS.2023.3277651
- Hermosilla, P., Soto, R., & Torres, R. (2024). Skin cancer detection and classification using neural network algorithms: A systematic review. Diagnostics, 14(4), 454. https://doi.org/10.3390/diagnostics14040454
- Hussain, S. I., & Toscano, E. (2024). An extensive investigation into the use of machine learning tools and deep neural networks for the recognition of skin cancer: Challenges, future directions, and a comprehensive review. Symmetry, 16(3), 366. https://doi.org/10.3390/sym16030366
- Jayeb, A. W., Rahman, M. S., & Islam, M. R. (2022). Computer vision based skin disease detection using machine learning [Unpublished master’s thesis]. Brac University
- Meedeniya, D., Kumarasinghe, H., & Kolonne, S. (2024). Skin cancer identification utilizing deep learning: A survey. IET Image Processing, 18(13), 3731–3749. https://doi.org/10.1049/ipr2.13045
- Mehta, S., & Singh, A. (2024). Multi-modal skin cancer diagnosis using CNN and SVM on dermoscopic and clinical images. 2024 3rd International Conference for Advancement in Technology (ICONAT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICONAT59457.2024.10480662
- Mishra, S., Tripathy, H. K., & Nayak, S. R. (2025). A hybrid fused-KNN based intelligent model to access melanoma disease risk using indoor positioning system. Scientific Reports, 15(1), 7438. https://doi.org/10.1038/s41598-025-56782-2
- Pandiyan, M., Sivakumar, S., & Nayak, S. R. (2024). Skin cancer classification using convolutional neural network with DWT features. 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 1–6). IEEE. https://doi.org/10.1109/Confluence60223.2024.10503412
- Rai, H. M. (2024). Cancer detection and segmentation using machine learning and deep learning techniques: A review. Multimedia Tools and Applications, 83(9), 27001–27035. https://doi.org/10.1007/s11042-024- 18442-2
- Ramachandran, M., Daniya, T., & Saritha, B. (2021). Skin cancer detection using machine learning algorithms. *2021 Innovations in Power and Advanced Computing Technologies (i-PACT)* (pp. 1–6). IEEE. https://doi.org/10.1109/i-PACT52855.2021.9696682
- Rehman, F., Khan, M. A., & Alotaibi, F. S. (2024). Skin disease detection system. 2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 1–5). IEEE. https://doi.org/10.1109/SMART59791.2024.10537024
- Salinas, M. P., López, C., & Martínez, F. (2024). A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digital Medicine, 7(1), 125. https://doi.org/10.1038/s41746-024-01095-8
- Tanusha, G., & Ashwini, K. (2024). SVM-based skin cancer diagnosis for malignant and benign tumor distinction. International Conference on Computational Intelligence in Data Science (pp. 123–135). Springer. https://doi.org/10.1007/978-3-031-53930-3_10
- Verma, N., Ranvijay, & Yadav, D. K. (2025). A comprehensive review on step-based skin cancer detection using machine learning and deep learning methods. Archives of Computational Methods in Engineering, 32(1), 1–54. https://doi.org/10.1007/s11831-024-10108-4
- Yang, G., Luo, S., & Greer, P. (2024). Advancements in skin cancer classification: A review of machine learning techniques in clinical image analysis. Multimedia Tools and Applications, 83(5), 1– 28. https://doi.org/10.1007/s11042-024-18530-3
- Zhang, L., Wang, Y., & Chen, X. (2024). A deep learning outline aimed at prompt skin cancer detection utilizing gated recurrent unit networks and improved orca predation algorithm. Biomedical Signal Processing and Control, 90, 105858. https://doi.org/10.1016/j.bspc.2024.105858
Back