Using Machine Learning tools to Calculate Multi Slice MultiEcho (MSME) Score for Alzheimer's Diagnosis
Sreedhar Yalamati
Abstract
Alzheimer's disease (AD) poses a significant public health challenge. The hippocampus is one of the most affected brain regions and a readily accessible biomarker for diagnosis through MRI imaging in machine learning applications. However, utilizing entire MRI image slices in machine learning for AD classification has shown reduced accuracy. This study introduces the novel 'select slices' method, which involves identifying and focusing on specific landmarks within the hippocampus region in MRI images. This approach aims to improve classification accuracy by eliminating irrelevant information from the analysis.
References
- Alzheimer’s Association, ‘‘2017 Alzheimer’s disease facts and figures,’’ Alzheimer’s Dementia, vol. 13, no. 4, pp. 325–373, Apr. 2017, doi: 10.1016/j.jalz.2017.02.001.
- G. Livingston, J. Huntley, A. Sommerlad, D. Ames, C. Ballard, and S. Banerjee, ‘‘Dementia prevention, intervention, and care: 2020 report of the Lancet commission,’’ Lancet, vol. 396, no. 10248, pp. 413–446, 2020, doi: 10.1016/S0140-6736(20)30367-6.
- G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, ‘‘The clinical use of structural MRI in Alzheimer disease,’’ Nature Rev. Neurol., vol. 6, no. 2, pp. 67–77, Feb. 2010, doi: 10.1038/nrneurol. 2009.215.
- J. Olloquequi, M. Ettcheto, A. Cano, E. Sanchez-López, M. Carrasco, T. Espinosa, C. Beas-Zarate, G. Gudiño-Cabrera, M. E. Ureña-Guerrero, E. Verdaguer, J. Folch, C. Auladell, and A. Camins, ‘‘Impact of new drugs for therapeutic intervention in Alzheimer’s disease,’’ Frontiers Bioscience-Landmark, vol. 27, no. 5, p. 146, 2022, doi: 10.31083/j.fbl2705146.
- Y. L. Rao, B. Ganaraja, B. V. Murlimanju, T. Joy, A. Krishnamurthy, and A. Agrawal, ‘‘Hippocampus and its involvement in Alzheimer’s disease: A review,’’ 3 Biotech, vol. 12, no. 2, pp. 1–10, Feb. 2022, doi: 10.1007/s13205-022-03123-4.
- M. Laakso, ‘‘MRI of hippocampus in incipient Alzheimer’s disease,’’ Ph.D. dissertation, Ser. Rep. Dept. Neurol., Univ.Kuopio,Kuopio, Finland, 1996.
- A. Moscoso, J. Silva-Rodríguez, J. M. Aldrey, J. Cortés, A. Fernández-Ferreiro, N. Gómez-Lado, Á. Ruibal, and P. Aguiar, ‘‘Prediction of Alzheimer’s disease dementia with MRI beyond the shortterm: Implications for the design of predictive models,’’ NeuroImage, Clin., vol. 23, Jan. 2019, Art. no. 101837, doi: 10.1016/j.nicl.2019.101837.
- K. M. Poloni and R. J. Ferrari, ‘‘Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease,’’ Comput. Methods Programs Biomed., vol. 214, Feb. 2022, Art. no. 106581, doi: 10.1016/j.cmpb.2021.106581.
- A. Demirhan, ‘‘Classification of structural MRI for detecting Alzheimer’s disease,’’ Int. J. Intell. Syst. Appl. Eng., vol. 4, no. 1, pp. 195–198, Dec. 2016.
- H. Qiao, L. Chen, Z. Ye, and F. Zhu, ‘‘Early Alzheimer’s disease diagnosis with the contrastive loss using paired structural MRIs,’’ Comput. Methods Programs Biomed., vol. 208, Sep. 2021, Art. no. 106282, doi: 10.1016/j.cmpb.2021.106282.
- S. Savaş, ‘‘Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures,’’ Arabian J. Sci. Eng., vol. 47, no. 2, pp. 2201–2218, 2022.
- Z. Zhang and E. Sejdić, ‘‘Radiological images and machine learning: Trends, perspectives, and prospects,’’ Comput. Biol. Med., vol. 108, pp. 354–370, May 2019, doi: 10.1016/j.compbiomed.2019.02.017.
- Y. Kazemi and S. Houghten, ‘‘A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data,’’ in Proc. IEEE Conf. Comput. Intell. Bioinf. Comput. Biol. (CIBCB), May 2018, pp. 1–8, doi: 10.1109/CIBCB.2018.8404980.
- S. Gao and D. Lima, ‘‘A review of the application of deep learning in the detection of Alzheimer’s disease,’’ Int. J. Cognit. Comput. Eng., vol. 3, pp. 1–8, Jun. 2022, doi: 10.1016/j.ijcce.2021.12.002.
- E. Thibeau-Sutre, B. Couvy-Duchesne, D. Dormont, O. Colliot, and N. Burgos, ‘‘MRI field strength predicts Alzheimer’s disease: A case example of bias in the ADNI data set,’’ in Proc. IEEE 19th Int. Symp. Biomed. Imag. (ISBI), Mar. 2022, pp. 1–4, doi: 10.1109/ISBI52829.2022. 9761504.
- M. Raju, V. P. Gopi, and V. S. Anitha, ‘‘Multi-class classification of Alzheimer’s disease using 3DCNN features and multilayer perceptron,’’ in Proc. 6th Int. Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2021, pp. 368–373, doi: 10.1109/WiSPNET51692.2021. 9419393.
- V. Sathiyamoorthi, A. K. Ilavarasi, K. Murugeswari, S. T. Ahmed, B. A. Devi, and M. Kalipindi, ‘‘A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer’s disease in MRI images,’’ Measurement, vol. 171, Feb. 2021, Art. no. 108838, doi: 10.1016/j.measurement.2020.108838.
- N. Yamanakkanavar, J. Y. Choi, and B. Lee, ‘‘MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey,’’ Sensors, vol. 20, no. 11, p. 3243, Jun. 2020, doi: 10.3390/s20113243.
- M. Karthiga, S. Sountharrajan, S. Nandhini, and B. S. Kumar, ‘‘Machine learning based diagnosis of Alzheimer’s disease,’’ in Proc. Int. Conf. Image Process. Capsule Netw. Cham, Switzerland: Springer, 2020, pp. 607–619, doi: 10.1007/978-3-030-51859-2_55.
- A. Farooq, S. Anwar, M. Awais, and S. Rehman, ‘‘A deep CNN based multi-class classification of Alzheimer’s disease using MRI,’’ in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Oct. 2017, pp. 1–6, doi: 10.1109/IST.2017.8261460.
Back